Watersheds on weighted graphs

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted fusion graphs: Merging properties and watersheds

This paper deals with mathematical properties of watersheds in weighted graphs linked to region merging methods, as used in image analysis. In a graph, a cleft (or a binary watershed) is a set of vertices that cannot be reduced, by point removal, without changing the number of regions (connected components) of its complement. To obtain a watershed adapted to morphological region merging, it has...

متن کامل

Watersheds, waterfalls, on edge or node weighted graphs

Fernand MeyerCentre de Morphologie MathématiqueMines-ParisTech () Watersheds, waterfalls, on edge or node weighted graphs 2012 February 29 1 / 201 arXi Introduction The watershed transform is one of the major image segmentation tools [4], used in the community of mathematical morphology and beyond. If the watershed is a successful concept, there is another side of the coin: a number of definiti...

متن کامل

Watersheds on edge or node weighted graphs "par l'exemple"

Watersheds have been defined both for node and edge weighted graphs. We show that they are identical: for each edge (resp. node) weighted graph exists a node (resp. edge) weighted graph with the same minima and catchment basin.

متن کامل

On weighted clique graphs

Let K(G) be the clique graph of a graph G. A m-weighting of K(G) consists on giving to each m-size subset of its vertices a weight equal to the size of the intersection of the m corresponding cliques of G. The 2weighted clique graph was previously considered by McKee. In this work we obtain a characterization of weighted clique graphs similar to Roberts and Spencer’s characterization for clique...

متن کامل

Walks on Weighted Graphs

We now define random walks on weighted graphs. We will let A denote the adjacency matrix of a weighted graph. We will also the graph to have self-loops, which will correspond to diagonal entries in A. Thus, the only restriction on A is that is be symmetric and non-negative. When our random walk is at a vertex u, it will go to node v with probability proportional to au,v: mu,v def = au,v ∑ w au,w .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pattern Recognition Letters

سال: 2014

ISSN: 0167-8655

DOI: 10.1016/j.patrec.2014.02.018